Low voltage voice switch interface circuit for hands-free operation in telephone

Description

The voice switch interface circuit U4087B is a linear integrated circuit for improvement of handsfree performance of U4090B system.

The U4087B provides an optimized interface to U4090B, the necessary level detectors and switching control for a properly operating speakerphone. The detection sensitivity and timing are externally controllable. Additionally, the

U4087B provides a back- ground noise monitor which makes the circuit insensitive to room noise.

The Block diagram shows level detectors, back ground noise monitor.

Due to low voltage operation it can be operated via power supply management of U4090B requiring 3.0 mA typ.

Features

- Low voltage operation: 3.0 to 6.5 V
- Four point signal sensing for improved sensitivity
- Monitoring system for background noise level
- Case: SO 16
- Chip Disable for active/standby operation

Benefits

- Fast channel switching allows quasi duplex operation
- Low current consumption for high output volume

Block diagram

Rev. A1: 01.02.1995

Figure 1 Block diagram with external circuit

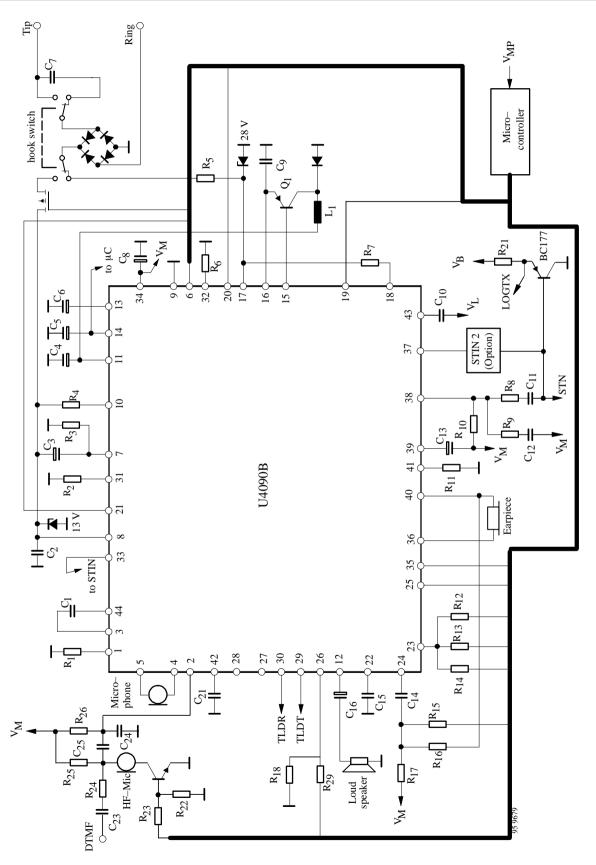


Figure 2 Application for handsfree operation

TEMIC

Typical value of external components

C_1	100 nF
C_2	4.7 nF
C_3	10 μF
C_4	220 μF
C ₅	47 μF
C_6	470 μF
C ₇	820 nF
C ₈	100 μF
C ₉	100 nF
C ₁₀	150 nF
C ₁₁	68 nF
C ₁₂	33 nF
C ₁₃	10 μF
C ₁₄	100 nF
C ₁₅	1 μF
C ₁₆	47 μF
C ₁₇	10 μF
C ₁₈	10 μF
C ₁₉	68 nF
C ₂₀	68 nF
C ₂₁	1 μF
C ₂₂	100 nF
C_{23}	6.8 nF
C ₂₄	10 nF
C ₂₅	100 nF
L_1	2.2 mH
R_1	27 kΩ
R ₂	20 kΩ

R_3	$>68 \text{ k}\Omega$
R ₄	10 Ω
R_5	1.5 kΩ
R ₆	62 kΩ
R ₇	680 kΩ
R ₈	22 kΩ
R ₉	330 Ω
R ₁₀	3 kΩ
R ₁₁	62 kΩ
R ₁₂	30 kΩ
R ₁₃	62 kΩ
R ₁₄	120 kΩ
R ₁₅	47 kΩ
R ₁₆	1 kΩ
R ₁₇	1.2 Ω
R ₁₈	30 kΩ
R ₁₉	6.8 kΩ
R ₂₀	6.8 kΩ
R ₂₁	15 kΩ
R ₂₂	330 kΩ
R ₂₃	220 kΩ
R ₂₄	68 kΩ
R ₂₅	$2 k\Omega$
R ₂₆	3.3 kΩ
R ₂₇	18 kΩ
R ₂₈	2 kΩ
R ₂₉	
R ₃₁	56 kΩ

Rev. A1: 01.02.1995

Pin description

Pin	Symbol	Function
1	TLI1	Transmit level detector input on the line side
2	TLO1	Transmit level detector output on the line side
3	RLO1	Receive level detector output on the line side, and input to the receive background monitor
4	RLI1	Receive level detector input on the line side
5	GND	Ground
6	CD	Chip Disable A logic low (< 0.8 V) sets normal operation. A logic high (> 2.0 V) disables the IC to conserve power. Input impedance is nominally 90 k Ω .
7	V _B	Supply voltage 2.8 to 6.5 V, approx. @ 3 mA AGC circuit reduces the receive attenuator gain @ 25 dB — Receive mode @ 2.8 V
8	RLO2	Receive level detector output on the microphone/speaker side
9	RLI2	Receive level detector input on the microphone/speaker side
10	NC	Not connected
11	NC	Not connected
12	C_{T}	Response time An RC at this pin sets the response time for the circuit to switch modes
13	V_{M}	It is a system ac ground, and biases the volume control. A filter cap is required
14	CPT	An RC at this pin sets the time constant for the transmit background monitor
15	TLI2	Transmit level detector input on the microphone/speaker side
16	TLO2	Transmit level detector output on the microphone/speaker side, and input to the transmit background monitor

Absolute maximum ratings

Reference point pin 1, $T_{amb} = 25$ °C, unless otherwise specified.

Parameters		Symbol	Value	Unit
Supply voltage	Pin 7	$V_{\rm B}$	-0.3 to + 7.0	V
Voltages:	Pin Pin Pin		$ \begin{array}{c} -0.3 \text{ to } (V_B + 0.3) \\ -0.3 \text{ to } (V_B + 0.3) \\ -0.3 \text{ to } (V_B + 0.3) \end{array} $	V
Storage temperature range		$T_{ m stg}$	-55 to + 150	°C
Junction temperature		Tj	125	°C
Ambient temperature range		T _{amb}	-20 to + 60	°C
Power dissipation T _{amb} = 60 °C	SO 16	P _{tot}	750	mW
Maximum thermal resistance Junction ambient	SO 16	R_{thJA}	70	K/W

Operation recommendation

Parameters	Test conditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Pin 7	V_{B}	3.0	_	6.5	V
CD input Pin MUTE input Pin			0	_	V_{S}	V
Ambient temperature range		T _{amb}	- 20	_	+ 60	°C

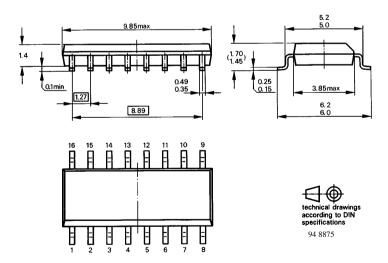
Electrical characteristics

Rev. A1: 01.02.1995

 T_{amb} = + 25°C, V_S = 5.0 V, $CD \le 0.8$ V, unless otherwise specified

Parameters	Test conditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Power supply						
Supply current	$V_B = 6.5 \text{ V}, CD = 0.8 \text{ V}$ $V_B = 6.5 \text{ V}, CD = 2.0 \text{ V}$	I_{B}		3.0 600.0	5.0 800.0	mA μA
CD input resistance	$V_{S} = V_{CD} = 6.5 \text{ V}$	R _{CD}	50.0	90.0		kΩ
CD input voltage	– High – Low	V_{CDH} V_{CDL}	2.0 0.0		V _S 0.8	V
Attenuator control						
C _T voltage	$\begin{aligned} &\text{Pin } 14 - V_B \\ &\text{R mode, } V_{CI} = V_B \\ &\text{Idle mode} \\ &\text{T mode} \end{aligned}$	V _{CT}		+ 240.0 0.0 - 240.0		mV
C _T Source current	R mode	I _{CTR}	- 85.0	- 60.0	- 40.0	μΑ
C _T Sink current	T mode	I _{CTT}	+ 40.0	+ 60.0	+ 85.0	μΑ
C _T Slow idle current		I _{CTS}		0.0		μΑ
C _T Fast idle internal resistance		R _{FI}	1.5	2.0	3.6	kΩ

Rev. A1: 01.02.1995


Parameters	Test conditions / Pin	Symbol	Min.	Typ.	Max.	Unit
Level detectors and backgro	ound noise monitor					
Transmit Receive switching threshold	Ratio of current at RLI1 + RLI2 to 20 µA at TLI1 + TLI2 to switch from T to R	I _{TH}	0.8	1.0	1.2	
Source current	at RLO1, RLO2, TLO1, TLO2	I _{LSO}		- 2.0		mA
Sink current	at RLO1, RLO2, TLO1, TLO2	I _{LSK}		4.0		μΑ
CPR, CPT output resistance	$I_O = 1.2 \text{ mA}$	R _{CP}		150		Ω
CPR, CPT leakage current		I _{CPLK}		- 0.2		μΑ

Ordering information

Туре	Package
U4087B-FP	SO 16

Dimensions in mm

Package: SO 16

TEMIC

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of **TEMIC TELEFUNKEN microelectronic GmbH** to

- 1. Meet all present and future national and international statutory requirements and
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will soon severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423